

Digital Design and Dependability Research Group FIT, CTU in Prague

Towards Trusted Devices in FPGA by Modeling Radiation Induced Errors

Tomáš Vaňát, Jan Pospíšil, Jan Schmidt {vanattom, pospij17,schmidt}@fit.cvut.cz

In close collaboration with Jozef Ferencei ferencei@ujf.cas.cz Department of Nuclear Spectroscopy, NPI of ASCR

Problem definition

FPGA

- Programmable logic device
- □ Lot of memory cells
 - Logic functions and interconnection Configuration
 - D Flip-flops for sequential logic Data

Hierarchy of FPGA interconnection

Switch blocks – global connections

Problem definition

FPGA

- Programmable logic device
- Lot of memory cells
 - Logic functions and interconnection Configuration
 - D Flip-flops for sequential logic Data
- CMOS
 - Small structures
 - Controlled by voltage
- Ionizing radiation
 - Transferring energy through matter
 - □ Depositing charge \rightarrow inducing current \rightarrow voltage change
- Problem: Single-event effects (SEE), mainly upsets (SEU)

SEU in FPGA

Change of

- □ Function (LUT)
- Structure (interconnection)
- Data (D-FF)
- Locally unpredictable can hit any location
- Can influence dependability of the circuit/application

But fightable by

- Redundancy
- Self check
- □ Self repair (reconfiguration, ECC, ...)
- Need of quantitative characteristic

- Deep simulation to the level of CMOS technology
 Unusable for real system size
- Accelerated life testing (ALT)
 - Unusable for real system too specific, too expensive
- Combination?
 - Partial simulation
 - and
 - Partial ALT

- 1. Create quantitatively described platform model
 - a) Based on higher-level simulation
 - b) Calibrated by Accelerated Life Tests
- 2. Use the model to predict any future design's behavior on this platform

- a) Higher-level simulation
 - Based on VTR framework
 - Custom FPGA architecture
 - Timing-driven place-n-route on given platform
 - Defect injection
 - Fault simulation
- a) Calibration by Accelerated Life Tests
 - Only on several special designs
 - Only for model calibration

Test Circuit Example

- Tests all LUTs and flip-flops
- Propagates any error to output
- Forms a long pipeline
- Is preloaded with data upon flip-flops reset

Pipeline

 Detects fault rate on the particular device under particular conditions

PESW, Prague, 12. 6. 2014

10

Test Circuit Example – Code

Symmetric

- After odd number of conversions, the output is same as input
- Any bit flip in any LUT appears as a change in the sequence

Code 1	Code 2	Code 1	Code 2
0000	1001	1000	1011
0001	1010	1001	0000
0010	1111	1010	0001
0011	0110	1011	1000
0100	0011	1100	0110
0101	0111	1101	1110
0110	1100	1110	1101
0111	0101	1111	0010
		-	

11

Entire Test System

- Based on Spartan 3 Starter Kits
- Two parts
 - One under radiation
 - One away from radiation
- Connected trough 16 differential lines
- Radiated part is controlled from the shielded one
 Remote monitoring, reset, reload

- Isochronous cyclotron U-120M
- At NPI Řež, ASCR
- Up to 37 MeV protons
- Intensity from 10⁴ p/cm²/s

Irradiation Setup

Spartan3 Irradiation

- Xilinx SRAM FPGA
- Starter Kit used
 - □ XC3S200 device
- 90 nm CMOS technology
- Only SEU in configuration memory (CMem) counted

Spartan3 Irradiation

Configuration error rate vs. proton flux

Configuration error rate vs. energy

PESW, Prague, 12. 6. 2014

SmartFusion2 Irradiation

- Microsemi FLASH SoC
 - Only FPGA part tested
- Starter Kit used
 - M2S050-FGG484 device
- 65 nm CMOS technology
- No SEU in configuration memory
- Some SEU in "data" flipflops (D-FFs)

SmartFusion2 Irradiation

Proton flux [Mp/cmM^2/s]

D-FF error rate vs. energy

PESW, Prague, 12. 6. 2014

- Preparing the same test for the IGLOO2 FLASH based FPGA
- Precise monitoring of the total dose
- Upgrade the communication module
- Synchronization of the FPGAs clock with cyclotron frequency
- Improving model of architecture, collect another data and calibrate the model

- We have proposed new method for predicting quantitative characteristics of SEU sensitivity of digital circuits implemented in FPGA.
- We have completed the first runs of ALT.
- We are currently working on the simulation model, improving the ALT system and preparing the tests for other devices.
- This method can be used for verifying **dependability** and **security** parameters of various designs implemented in FPGA

- FLASH based SmartFusion 2 (65 nm) has better resistance to Single Event Effects than Spartan 3 (90 nm)
 - □ Configuration memory completely safe
 - D flip-flops less vulnerable, although it is a smaller technology
- But the SmartFusion 2 has a very low total ionizing dose to permanently destroy to destroy the FLASH programming controller.
 - □ ~4 kRads for SF2
 - Spartan 3 already survived several hundreds of kRads without permanent error noticed

Digital Design and Dependability Research Group FIT, CTU in Prague

Thank you!

Tomáš Vaňát, Jan Pospíšil, Jan Schmidt {vanattom, pospij17,schmidt}@fit.cvut.cz

Special thanks to Jozef Ferencei ferencei@ujf.cas.cz Department of Nuclear Spectroscopy, NPI of ASCR

