Comparision of various approaches in Fault-Tolerant and Attack-Resistant system design

Filip Štěpánek, Martin Novotný

FT and AR at the same time

Real-world threats

Fault tolerance

Figure: Mother Nature

- "Attacks" randomly
- Safety-critical systems

Attack resistance

Figure: Evil computer hacker

- "Attacks" with intent
- Money, banking, privacy...

FT and AR at the same time

Analogy?

Breadth First Search

Depth First Search

- Different approaches (e.g., levels)
 - "Nature" inserts faults from time to time
 - · "Hacker" inserts faults to take advantage
- Results may be the same \implies system failure

FT and AR at the same time

Summary

Real-world threats

How to fight hackers and mother nature?

Figure: Mother Nature

- Fault predictions and experience
- Safety standards and regulations

Figure: Evil computer hacker

- Cryptography
- Countering known attacks

FT and AR at the same time

System design

Optimizes:

• Area

(e.g., minimizing the area requirements of the device)

• Time

(e.g., low-latency computation)

Power

(e.g., minimizing the power consumption)

What about the Fault-tolerant and Attack-resistant systems?

FT and AR at the same time

Fault-tolerant systems

Implements redundancy:

Area

 \implies physical redundancy (TMR, parity checking)

• Time

 \implies repeating the operation

ヘロト ヘアト ヘヨト ヘ

Power

 \implies increasing power consumption with higher level of redundancy

FT and AR at the same time

Summary

Attack-resistant systems

Aims at securing the information:

- Power
 - \implies may reveal the processed information

Filip Štěpánek, Martin Novotný

イロト イポト イヨト イヨ

FT and AR at the same time •00000 Summary

Fault-tolerant and Attack-resistant systems at the same time?

Optical storage media

- FT properties: uses error-correction codes
 - Picket code
 - RS-PI code
 - RS code
- AR properties: protects the intellectual property (DRM)

It is not safety-critical application

FT and AR at the same time 00000

Summary

Fault-tolerant and Attack-resistant systems at the same time?

Example – Securing the communication channel

- add cryptographical scheme to the FT system
- ⇒ the cryptographical scheme must satisfy the FT requirements

FT and AR at the same time

Proposed encryption module for the Prague subway

FT and AR at the same time

Proposed encryption module for the Prague subway

Filip Štěpánek, Martin Novotný

FT and AR at the same time 000000

Proposed encryption module for the Prague subway

A D > A B >

Proposed encryption module for the Prague subway

Security risks:

- Operation expectancy
- Encryption module might be "acquired"
- Masterkey management

Figure: Opencard

FT and AR at the same time

Summary

Fault tolerant and attack resistant systems at the same time

Our goals:

- Finding common properties of FT and AR systems
- Evaluation of FT systems using DPA (Evariste II)
- Minimizing the threat of attacks on FT systems