

a discipline of software engineering

Effects of Arbitrary Hardware Faults on Multicore Scheduling in Safety-critical Applications

Evaluation by enhanced Markov models and discrete event simulation

Stefan Krämer 12th June 2014

- 1. Motivation Background
- 2. Reliable Multicore System Architecture
- 3. Analysis by Markov Model
- 4. Analysis by Discrete Event Simulation
- 5. Conclusion & further work

- Increased performance demand in real-time systems
- Harder requirements for safety, reliability and availability
- Decreasing feature size on silicon results in more probable transient hardware faults
- Integration of different applications on one ECU

Reliable, fault-tolerant, multi-core, real-time operating system for mixed criticality embedded applications

Project - Goal

Sub – Goal: Verification of Discrete Event Simulation

aboratory for

afe and Secure Systems

v=(3

Scalable, generic System Architecture

2014-06-12 S. Krämer, P. Raab

Coded task processing

Redundant task processing

- n discipline of software engineering
 - Analytic Approach
 - Reliability analysis:
 - abstracted to simplified model
 - e.g. Markov models or network modeling
 - Proof of feasibility of Scheduling:
 - on a single core analytically possible
 - for global multicore scheduling often impossible
 - Simulation based Approach
 - More detailed model for
 - Variance of task execution
 - Influence of transient faults
 - Combined consideration of error and timing model

Safe Task Execution

- Analyzed by:
 - Discrete Event Simulation
 - Markov Model
- Analyzed Scenarios:
 - Coded Processing
 - Symmetric Redundant Processing
- Task Parameters:

	Execution time [ms]	Period/Deadline [ms]	Fault rate λ [1/ms]
A: Coded	10	100	0.10
B: Redundant	10	100	0.10

Coded task processing

Redundant task processing

fault tolerance

Systems Enhanced Markov Model - Results

Coded task processing

engineering

v=[3

- expected value of the task execution time:
 E = 26.81ms
- State Probability:

Redundant task processing

- expected value of the task execution time:
 E = 52.5ms
- State Probability:

Laboratory for Safe and Secure Systems Modeling of Discrete Event Simulation

Coded task processing

v=(3

a discipline of software engineering

Redundant task processing

2014-06-12 S. Krämer, P. Raab

aboratory for Safe and Secure Systems Modeling of Discrete Event Simulation - Results

Coded task processing

v:(3

average value of the task response time:

 $\overline{t_{response}} = 27.28ms$

p(t_{response} < deadline) = 0.99</p>

Redundant task processing

 average value of the task response time:

 $\overline{t_{response, Multiseed}} = 53.95ms$

- $p(t_{response} < deadline) = 0.87$
- Multi Seed Simulation

	min [ms]	average [ms]	max [ms]
Response	51.67	53.95	55,82
time			

Additional QM-Tasks

Results

	Execution time [ms]	Period/Deadlin e [ms]		Without QM- tasks	With QM-tasks
QM-tasks	2 - 3	10	Saftey-task: response time [ms]	53,95	57,53
			Saftey-task: deadline violations [%]	12.8	16.3
			QM-task: start to start jitter [ms]	0	0 462

- Result of Markov approach for the expected response time within range of the results of the multi seed simulation
- deviation of the simulated results because of consideration of operating system calls (synchronization, scheduling)
- Simulation capable for more complex real-life systems possible
- Discrete event simulation is capable to evaluate safetycritical systems in a holistic timing and reliability view
- Applied scheduling algorithm has to be considered in the whole system analysis which hardly can be achieved by Markov modelling

Discussion

Thank you for your attention!

