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Root problems

Belong to the pure math.
Form the Digital Design as an academic
discipline
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Root problems

Example 1

Functional Classification. Post Theorem
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Universal Set of Logic Functions

Definition: Let F ={fi, f,,.... f,, } be a set of logic functions. If an arbitrary
logic function may be realized by a loop-free combinational network using

the logic elements that realize function f, (i = 1,2,...,m), then F' 1s universal.

Definition: A function such that f (0,0,...,O) =01is a 0- preserving function.

A function such that f(1,1,...,1) =1 is a 1-preserving function.
Theorem : Let

M, be the set of O-preserving functions,

M, be the set of 1-preserving functions,

M, be the set of self-dual functions,

M, be the set of 1sotonic functions, and

M, be the set of linear functions.
Then, the set of functions F is universal if F & M, (i=0,1,2,3,4,5).



Root problems

Example 2

NPN Classification
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NPN-EQUIVALENCE

For given logic function f, if a function g is
derived from f by the combination of the

following three operations:

1. Negation of some variables in f;
2. Permutation of some variables of f;
3. Negation of f,

then the functions f and g are NPN equivalent.
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NPN-EQUIVALENCE

NPN transformation is one function
transformation into another by Negations and
Permutation of the variables and Negation of

the function.

NPN class of the functions is a subset of function
transformed into each other by Negations and
Permutation of the variables and Negation of

the function.
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Classification of two-variable functions

# of variables |All functions NP NPN
0
1 X
XY
2

xX® y




Number of equivalence classes

Number of variables 2 3 4
All functions 16 256 65536
P-equivalence 12 80 3984
NP-equivalence 6 22 402
NPN-equivalence 4 14 222




Example

Fl(XoaXl) = Fl4(X0>X1) = Fz()?oaXJ = Fl3()_(oaX1) =
= F,(Xo, X)) = F;(Xy, X)) = Fi(X,, X)) = F5(X,, X))

Functions of 2 variables have
4 NPN classes of equivalence.




NPN classes of the functions of 3 variables

X2
001 011
101 111
000 010 R
xl 4 6
100 110
S 7
X0
0 2
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C, N(C,)=16
0 2 F(X)=X"=x,xx,

F(X)=X =X, +% +7%,
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C, N(C,)=24
4 6
i
. . F(X)=X"+X" =x,xx, + X, XX,
1 3
4 6

FX)=X"e X" =(X,+X, +X,)(X, + X, + X,)
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N(C,)=24

F(X)=X"+X"=x,xx, + XXX,

FX)=X"eX"=(X,+% +X,)(x, +x, +X,)
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0 2
3
6
/
2
3

N(C,)=8

F(X)=X"+X"=x,xx,
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F(X)=X"+X°+X° = x,x,x, + X X, X, + X, X, X,
F(X)=X"eX°e X’ =

= (X, + X + X)(X, + X, +.X,)(X, + X, +X,)

Prahy, Czech Republic




N(C,)=48

7 6 1 - - =
F(X)=X"+ X"+ X =Xx,xXx, + X,X,X, + XX, X,

F(X)=X"eX°eX'=

= (X, + X, +X,)(x, + X, +X,)(X, + X, +X,)
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7 2 1 — — —
F(X)=X"+X"+X =Xx,xx, +X,X,X, + X, X, X,

F(X)=X"eX’ e X'=
= (X, + X, +X,)(x, + X, + x,)(X, + X, + Xx,)
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F(X)=X7T+X6+ X5+ X3=

= x0x1x2 + )_coxlx2 + xo)flxz + xoxl)_cz

F(X)=X7eXx0ex5e xl=x41+ x24 x14 X0
PESW-2014, June 12-13, 2014 Roztoky u
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4 6
/]
4 6
0 2
/ 5 ;
1 3
0 2

FX)=X"+X°+ X +X° =
= Xy X, X, + XXX, + XX, X, + XX, X,

7 6 5 2 4 3 1 0
F(X)=X"e X e X e X' =X"+X"+X +X
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1 3
7 6 5 0
F(X)=X"+X"+X +X =
= XX, X, + XX, X, + XX, X, + XX, X,

7 6 5 0 4 3 1 2
F(X)=X"o X" o X o X =X"+ X" +X +X
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2
FX)=X"+X + X +X’ =
= XX Xy + XX, X, + XX, X, + XX, X,

7 5 2 0 4 6 1 3
FX)=X"eX e X?e X' = X"+ X+ X'+ X
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Cis N(C,5)=2

FX)=X"+X'+X"+X'=
= XXXy + XX, Xy + XX, X, + XX, X,
FX)=X"eXte X e X' =X+ X+ X+ X°
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From NPN to Linear Decomposition

NPN

Xl ———»

Xn — »

X1

o 0
o

Xn



Linear Decomposition

X1 — » AN
) L S FL)  —» F
n — » ——»

The value of the autocorrelation function R, of the logical function f:
GF(2") => GF(2) at the point T € GF(2") is defined as:

E f x+t

xEGF



Body problems

Fundamental studies of the
Digital Design itself, enriching
the discipline



Body problems

Example 1

Functional Decomposition
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Two-Level Decomposition
FIX)=F(Y) ZUY=XZNY =Y
F(Z,Y)=P(Z,¢(Y))

Y = bound set Z= free set

=

If ZNY =0 - disjoint decomposition

If ZNY = O - non-disjoint decomposition

PESW-2014, June 12-13, 2014 Roztoky u
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Decomposition Types

Z

Simple disjoint decomposition

(Asenhurst)
Y | Q Y —— (1))
@ F

D
Z— — I

—————— Z R

Disjoint decomposition Non-disjoint decomposition

(Curtis)
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Simple Disjoint Decomposition
If the function

FX)=FZY) ZUY=X,ZNY =0

can be presented in a form

F(Z)Y) = ®(Z,¢(Y))

we will say that function F(X) has

a simple disjoint decomposition with respect to bisection (Z,Y).
¢( @ ) is an image of the decomposition;

qp( Y) is a component of the decomposition.



Example

— qp)_(o)_(,, + §_0X0X1 - image of the decomposition,
Q=XogX3+ XX+ X3X, -componentof the decomposition.
F(X)=(X,X3+ XX, +X3X,)XpX,+

+ XX X5 X3+ XgX XX 4+ XX X3X,4

with decomposition - 11 two-input logical operations;

without decomposition - 23 two-input logical operations.



FX)=FZY) ZUY=X,ZNY =0

Decomposition Chart

Q [ o[ 1 23 [4[5]6]7
Y [ 000 | 100 | 010 | 110 [ 001 [ 101011 | 111
Q, | Z
oJoo| ol oo 1 o1 ][1]1
IJ10oJ o[ ofJolof[oJolo]o
2Jot[ o[ oo ] o lofJolo]o
sl 11t 1t ol 1]o]o]o
(Y)=@(x,,x;,x,)
o[ oo 1 JTo 1 [1]1




Decomposition Chart

oY )= oY )=
7 0 1
Q, |00..00| f£,(Q f(Q,)
Q |10...00 | f,(Q f(Q,)
Q| 11..11 fz(an_k_1) ;g(oz,,_k_1)




Example:

F(X) = ®(Zp(Y)) 5
= ¢f,(Z) + 1, (Z)=

= QX ,X; + PX X,

[[(£)=D(Lp(Y)=1) =X, Xy,
[,(£) = P(Z£,9(Y)=0)=X,X,.



F(X)=F(x,,X,,X,,X;,X,) =
_(DQ(OLXW?(XZ’Xw ))=
= QXX + QX X,

O =X, X5+ X,X,+X3X,

F(X) = (X, X5+ X, X, + X3X, )Xo X, +
+ (X, X5+ X, X, 4+ XX, )X X,




Q 10 1 |23 [4]5]6]7
Y | 000 | 100 | 010 | 110 | 001 | 101 | 011 | 111 Z\(P 0 | 1
7
Q, 00 | 0 | 1
010 ] 0101071 111071111
1 [10] 0 0 0 0 o]l o] o] o0 10 0 0
>0t 0l 0] o010 lo0]ololo
311l 11 11101 1]0lo0olo0 01 0 0
tp(Y)=(p(x2,x3,x4) 11 1 0
01 0 | 0

.

@ — Component of decomposition @ - Image of decomposition



Ashenhurst’ s Fundamental Theorem of
Functional Decomposition

The simple disjoint decomposition
exists if and only if the corresponding
decomposition chart has

at most two distinct column patterns.



Q. o | ... Ny 251
Q,
0 HO L. HO .. /1(0)
1 SO L. HD L. 1M
N. SHWND L. HIND ... SNV 2)
onk_o f1(2”"k “2) | eeees f2(2”‘k )| eeees f,2"F-2)
20K [T . NS D fl(z’”"k -1)
@(Y) 17 | ... o | ... 1
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Example

Function of 6 variables: Y = {x3, X4 X5}; Z={Xp,X1,X;}
T ={34,6,7,8,10,11,13,15,16,18,19,21,23,27, 28,30, 31,
32,34,35,37,39,40,42,43,45,47,48,50.51,563,565,59,60,62,63}

Q| 0 1 2 3 4 5 6 7
g-22
0 0 1 1 0 1 ] 1 0
1 0 0 0 0 0 0 0 0
2 0 1 1 0 1 1 1 0
3 1 1 1 1 1 1 1 1
4 1 0 0 1 0 0 0 1
S 0 1 1 0 1 1 1 0
6 1 0 0 1 0 0 0 0
7 1 1 1 1 1 1 1 1

T, =11,24,56}, Ty 7 ={0,2,3,5,7}; T, 7 ={3,4,6,7}.



-

[E—

=
(=)

A

12

14

15

¢(Y)
Q,
0 0 1
1 0 0
2 0 1
3 1 1
4 1 0
5 0 1
6 ] 0
7 1 1

_

10

3/'\

/T

6 P(L,p(Y)) = XoXo@ + XoXq + X Xo0 + X Xo@

Component of decomposition:

P(Y) = X3Xy4+ X3Xg + X4 X5

11



Body problems

Example 2

Threshold Logic
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Threshold Logic

Function F(Xq,X;,....,X,_;) is called threshold function,

if 1t can be represented as :

F(xy, X500 x, )= Sign(a,x, + o x, +....+ a,_x,_, — 1) =

n-1
= Sz’gn(z ax, —n),
=0

where
. 1 1f A=0
SignA = .
0 1if A<O
a, - weightof input (variable) x ;

n - threshold.



Example: There are 16 functions of two variables, Among them, only two functions
are not threshold functions: @ x, and x;®@x, Allother functions are
threshold functions.

Example: All the monotone increasing function with up to three variables are
threshold functions. However, the four-variable function X;X, V X3X, isnota
threshold function.

Set of all functions

Monotonic
Isotonic ——
Threshold —
Self-dual —
Majority
fr fs S Lo ST
/3
/s
Jo




Example of three-inputs majority (voting)

function
X, X, X, X, +X,-2 Sign(X,+X,+X,-2)
0 0 -2 0
0 0 -1 0
1 0 -1 0
1 0 0 1
0 1 1 0
0 1 0 1
1 1 0 1
1 1 1 1




Hyper-geometrical representation of threshold
function

n-1
Equation ZO‘J'XJ- -1 =0jg the equation of a hyper-plane in the n-
i dimensional space.

For 2-dimentions: a,x, +x; =1 =0 equation of a line.

X +x,-1=0;

D(y,L)=2 AN =1 _ Yot ) —1;

Jai +af V2

DO, 1) =2 — .

Jag, +af J2

\4




For 3-dimentions:

QpXg T O X+ OHXy — 1) = 0

- equation of a plane.

N\

X1
X +x,-1=0;

D(Y,P)= Kot ON TV, =1 _ Vot Nt ) —1;

Vo +a +a; B

Prahy, Czech Republic



n-1

For n-dimensions: Ea ;x; —=n=0equation of a hyper-plane in the n-
dimensional space. /-0

n-1
20y =1
D(Y,P") =12 ;

n-1 5 . " . n-1
As /j=0aj >0, then Sign{D(Y,P")} = Szgn(goajyj -7)

and the value of the threshold function in the point Y (cube
vertex) 1s determined by the sign of the distance from this
point to the hyper-plane determined by the weights of the

variables and by the threshold.



At all the cube vertices located above or within the hyper-plane,
the value of threshold function 1s equal to 1.

At all the cube vertices located below the hyper-plane,

the value of threshold function 1s equal to O.

\\\\\\\\\\\\\\\

F(Xo,X,,X,) = XoX, X, =

= Sign(x, +x, +x,-3);
PESW-2014, June 12-13, 2014 Roztoky u
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4
Q)

&

F(x())xlyxz) = x0x2 + xlxz —

a\\%&\\\\ = Sign(x, +x; +2x, -3)

St

\ 9 . W
e

F(xo’xl’xz) =

= Sign(x, +x, +x,—-2);
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F(xy,x,X,) = XyX, + X, =

4/’?///4

P

= Sign(x, +x, +2x,-2),

7
‘ A AN
NN

F(x,,x,x,)=x,+x, +Xx, =

= Sign(x, +x, +x,—1);

A\
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F(xy,x,%, ) = XgX) + XXy = F(xy,Xx1,X,) = XoX, + X1 X, =

= Sign(x, + x; + 2x, - 3); = Sign(xy =X, +2x, =2);

Prahy, Czech Republic



For Boolean function defined by two sets of vertices T and F.

DXET)=1; DXEF)=0.

The input weights and threshold of the corresponding threshold function are found
by solving the task:

n—1
min(z ‘aj‘ + ‘77
=0

n_

);

[E—

ax,-n=z0 VXET;

.
I
-

n—1
ax;,-n<0 VXEF;

~.
S

This task is called the standard task of linear programming.
If a solution of this task exists, then for X; = {0,1} 1t exists in integer numbers.
If a solution doesn’t exist, this Boolean function 1s not a threshold function.



Since a threshold function is monotonous, it is represented by a star of basic elements.
Basic sets T, and F, of threshold function are the sets of vertexes, which are maximal
diagonal vertices in the basic elements that form stars for the function itself and for its

negation.

Example:

Star top is 15 vertex.
T=1{3,6,7,10,11,13,14,15}
T,={3,6,10,13}

Star top of negation function is 0
vertex.

F=1{0,1,4,2,5,8,9,12}
F,={2,5.9,12}

= Sign(x, + 2x, + X, + x; —3)

When synthesizing a threshold element, it is sufficient to solve the linear
programming task only for the basic sets because, if the inequalities are true for the

supporting sets, they are certainly true for all the remaining vertexes.




Branch problems

Applied engineering studies
caused by and connected with
emerging industrial challenges

’ e B ’
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Branch problems

Example 1

DESIGNING FAULT TOLERANT FSM BY NANO-PLA

PESW-2014, June 12-13, 2014 Roztoky u
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MASKING SCHEMES OF FAULT TOLERANT PLA

AND OR

Standard PLA

A-O fault masking A-O-0 fault masking

PESW-2014, June 12-13, 2014 Roztoky u
Prahy, Czech Republic



MASKING SCHEMES OF FAULT TOLERANT PLA

A-A-O-0 fault masking A-O-0-A fault masking

PESW-2014, June 12-13, 2014 Roztoky u
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ESTIMATION OF AREA AND DEVICES

NUMBERS
Smg = [P + OP; Dorg =D, +D,;
S =3P +30P+9P; D, .=3D, +3D, +9P;
S ., =4IP +20P; D, =4D, +2D ;
S oo = 2IP + 20P + 20; D,,=2D,+2D, +20;
S oo =2IP+20P+2P+20; D, =2D,+2D_ +2P+20;
S oos = 2IP + 40P + 60. D, .. =2D,+4D, +60.



INTEGRAL EFFICIENCY FACTOR
DIRECT vs. SM SCHEME

@ Direct Area x Devices @ SM Area x Devices
| 3
|0
>
8 "
5
8
3
. «

Orig TMR A-O A-O-O A-A-O-O A-O-O-A



ALL THE KNOWN METHODS:

—Are based on doubling rows and/or columns of
PLA plans.

—Double empty crosspoints of the PLA, which
results in unreasonable overhead.

—Don’t use the density parameter to reduce the
resulting area.



The approach is oriented to combinational
parts of FSMs corresponding to sparse PLAS:

— Is based on decomposition of the initial PLA
into a chain of high-density component PLAs.

— Allows transforming the high-density
components into a certain fault tolerant form,
without excessive doubling of PLA’s empty

crosspoints.



FINITE STATE MACHINES

Synthesis of Fault Tolerant FSM by PLA



Structural Table of FSM

an | Klam) as | Klas) | Xfamas) | Ylamas) Vi | Dfamas) | H
a; | 110 as 101 X1 Yr Y dids I
a; 110 ~X] B Yo d;d> 2
a» | 000 s 101 1 Yoy Ya didz 3
az | 101 as 100 X7 Yinyri Y4 ds 4
as Q01 ~X7Xs |- Yo ds O
az 000 ~x7~Xs | Yays yio Yi — 6
as | 010 a; 110 xX) x3 | Yysy4 Y2 didz 7
az | 101 xXi~x3 | Yiyaya Ya| dids 8
w7 111 ~X1X2 | Y3y Yo | didads 9
a4 010 ~x1-X2 | yrya Ye o 10
as | 011 Qx4 010 X4X6 Yay 12 Yo do 11
as 011 X4-X6 | Yy 13 Yo| doads 12
as 001 ~X4 Yeys 5 ds 13
as | 100 ax 000 X5 YioYyii Ya - 14
3 101 ~X5XT Y12 Yio dids 15
(15 001 ~X5~Xy7 Yi10l411 Yx} (.13 16
ar; | 111 as 011 1 Yiya Ye dod: 17
ax | 001 as 001 Xé — Yo d: 18
as 011 ~X6 Yoy iq Y7 dods 19
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PLA IMPLEMENTATION OF FSM
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INITIAL FSM

The combinational part of the initial FSM implements transformation
(xuT)=(ruD);
X ={x,,...,%, | -input variables X = X, U X,, X, N X, = &;
{yl, ,yN} -output variables Y =Y UY ,Y NY, = ;
= {tl,..., R} - present state vanables;

T
D= dl,...,dR} - next state vanables.



SIX MATRIX (SM) FSM
ARCHITECTURE

PLA implementation



|

SM ARCHITECTURE

'

IPLA

:

!

CPLA

";\)—n

- O —

O

OPLA




SM TRANSFORMATIONS

Two main transformations form the SM architecture :
— transformation of input vanables
— transformation of output vanables.

Both of the transformations are implemented by corresponding PLAs.

The SMarchitecture comprises three PLAs :
inputs transformation PLA (Input PLA): (X uUT ) = P,
core transformation PLA (Core PLA): (X2 UPU T) = (Q UuY U D),
outputs transformation PLA (Output PLA): Q=Y.

Two additional sets of auxiliary vanables are introduced into the SM architecture :
P= {Pv' oy Dy }- output vanables of Input PLA,;
0={4,.... 4, |- output variables of Core PLA.



INPUTS TRANSFORMATION PLA

X (a ) - set of input variables that determine the transitions from state a..

i

X(a1)={xl}; X(a5)={x4 xd}; X(a2 =
X(a6)={x5,x7}' X(a3)= X, xg}; X(a7)=®
X(a4)= {xl,xz,x3},' X(a8)= {x6}.

Transformation of the onginal input vanables - replacing the set of vanables X

with a set of new vanables P. |P| < 3.



INPUTS TRANSFORMATION

To optimize the PLA implementation of the inputs transformation PLA,
a specific state assignment has to be applied:

K(a,)=110;K(a,)=000; K (a,) = 101;
K(a,)=010;K(a,)=011; K (a,) = 100;
K(a,)=111; K(ay) =001



REPLACEMENT OF INPUT VARIABLES

a, P P, Ps
a Xy - -
a, - - -
a; X7 Xsg -
a, X; X2 X3
a, X, X, -
Qg X7 Xs -
a, - - -
a, - X, -

After minimization:
p, = L,13X, + t2X, + L,1,X,;

p, = Lt X, + 13X, + hit, X, + tat3X,



OUTPUTS TRANSFORMATION

The outputs transformation PLA transforms a set Q to a subset Y-
Y, =@, Y, = {5550 1iYs = {753 }3%s = {3350

Y, = {¥0:0u 3¥s = {36:3 3 ¥s = {3033 };

Y, = {5314 }3%s = {32 }: % = {¥eo2s }i%0 = {702}

Each Y, - set may be associated with a binary code K (YJ )

B; - a minterm of vanables g¢,,..., q,, corresponding to K(YJ)
ZW=B,+Bgy,=B;y,=B, +B; + B

Yy =B, + By} ys = By; ys = Bs + By; ¥, = By;

Ys = Bs; ¥y =By 0= B, + B;; y,, = By;

Yiz = Bios Y13 = By} Y14 = B;.



CORE TRANSFORMATION

The core transformation PLA implements the transformation:
(x,uPuUT)=(QUY,UD).

The Core FSM differs from the initial FSM by its inputs and outputs.
[t uses new P variables instead of input vanables X1, andnew Q variables
instead of output variables Y.

The transition functions and the next state functions of the core FSM remain

the same as in the inrtial FSM.



CORE FSM

um | Klam) as | Kfus Pfcim ts Oftam tis Dftim,tis H
a; | 110 as 101 pi Bs dids 1
aj 110 ~D] Bp ddz 2
az | 000 Qs 101 1 Ba dids 3
as | 101 as 100 2 DB d; 4
as 001 ~pip> Bo ds L
an 000 ~Pi1~pP2 B; - 6
as | 010 aj 110 Pi X3 B> didz 7
as 101 P1~X3 B3 dids 8
az 111 ~pPip2 B> ddods 9
a4 010 ~D1~p2 DB do 10
as | O11 s 010 pip2 By d 11
as 011 pP1~p2 Bg dads 12
as | 001 ~p1i 5 ds 13
as | 100 az 000 2 DB - 14
aa 101 ~Papi Bio dids 15
as 001 ~pP2~pi Ba dz 16
ar | 111 as 011 1 D dods 17
ax | 001 as | 001 p2 By ds 18
as 011 ~p2 Bz dods 19




OPTIMIZED SIX MATRIX
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FAULT TOLERANT SM ARCHITECTURE

FT FT
|P|_A CPLA Memory

FT
OPLA

¥
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INTEGRAL EFFICIENCY FACTOR
DIRECT vs. SM SCHEME
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CONCLUSIONS

A taxonomy of research in Digital Design is presented
Root, body and branch types of research are considered

Root type belong to the pure math and forms the Digital
Design as an academic discipline

The body researches comprise fundamental studies of
the Digital Design itself, enriching the discipline.

The branch researches include applied engineering
studies caused by and connected with emerging
industrial challenges.

Digital Design is on its mature stage of evolution
New ideas are extremely important



